68 research outputs found

    Imaging transverse electron focusing in semiconducting heterostructures with spin-orbit coupling

    Full text link
    Transverse electron focusing in two-dimensional electron gases (2DEGs) with strong spin-orbit coupling is revisited. The transverse focusing is related to the transmission between two contacts at the edge of a 2DEG when a perpendicular magnetic field is applied. Scanning probe microscopy imaging techniques can be used to study the electron flow in these systems. Using numerical techniques we simulate the images that could be obtained in such experiments. We show that hybrid edge states can be imaged and that the outgoing flux can be polarized if the microscope tip probe is placed in specific positions.Comment: Contribution to the Book/Proceedings of the PITP Les Houches School on "Quantum Magnetism" held on June, 2006. Final forma

    Fully gapped topological surface states in Bi2_2Se3_3 films induced by a d-wave high-temperature superconductor

    Full text link
    Topological insulators are a new class of materials, that exhibit robust gapless surface states protected by time-reversal symmetry. The interplay between such symmetry-protected topological surface states and symmetry-broken states (e.g. superconductivity) provides a platform for exploring novel quantum phenomena and new functionalities, such as 1D chiral or helical gapless Majorana fermions, and Majorana zero modes which may find application in fault-tolerant quantum computation. Inducing superconductivity on topological surface states is a prerequisite for their experimental realization. Here by growing high quality topological insulator Bi2_2Se3_3 films on a d-wave superconductor Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} using molecular beam epitaxy, we are able to induce high temperature superconductivity on the surface states of Bi2_2Se3_3 films with a large pairing gap up to 15 meV. Interestingly, distinct from the d-wave pairing of Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}, the proximity-induced gap on the surface states is nearly isotropic and consistent with predominant s-wave pairing as revealed by angle-resolved photoemission spectroscopy. Our work could provide a critical step toward the realization of the long sought-after Majorana zero modes.Comment: Nature Physics, DOI:10.1038/nphys274

    Controlling Curie temperature in (Ga,Ms)As through location of the Fermi level within the impurity band

    Full text link
    The ferromagnetic semiconductor (Ga,Mn)As has emerged as the most studied material for prototype applications in semiconductor spintronics. Because ferromagnetism in (Ga,Mn)As is hole-mediated, the nature of the hole states has direct and crucial bearing on its Curie temperature TC. It is vigorously debated, however, whether holes in (Ga,Mn)As reside in the valence band or in an impurity band. In this paper we combine results of channeling experiments, which measure the concentrations both of Mn ions and of holes relevant to the ferromagnetic order, with magnetization, transport, and magneto-optical data to address this issue. Taken together, these measurements provide strong evidence that it is the location of the Fermi level within the impurity band that determines TC through determining the degree of hole localization. This finding differs drastically from the often accepted view that TC is controlled by valence band holes, thus opening new avenues for achieving higher values of TC.Comment: 5 figures, supplementary material include

    Temperature Dependence of Spin-Split Peaks in Transverse Electron Focusing

    Get PDF
    We present experimental results of transverse electron-focusing measurements performed using n-type GaAs. In the presence of a small transverse magnetic field (B⊥), electrons are focused from the injector to detector leading to focusing peaks periodic in B⊥. We show that the odd-focusing peaks exhibit a split, where each sub-peak represents a population of a particular spin branch emanating from the injector. The temperature dependence reveals that the peak splitting is well defined at low temperature whereas it smears out at high temperature indicating the exchange-driven spin polarisation in the injector is dominant at low temperatures

    Electrically tunable transverse magnetic focusing in graphene

    Get PDF
    Author's final manuscript January 9, 2013Electrons in a periodic lattice can propagate without scattering for macroscopic distances despite the presence of the non-uniform Coulomb potential due to the nuclei. Such ballistic motion of electrons allows the use of a transverse magnetic field to focus electrons. This phenomenon, known as transverse magnetic focusing (TMF), has been used to study the Fermi surface of metals and semiconductor heterostructures, as well as to investigate Andreev reflection and spin–orbit interaction, and to detect composite fermions. Here we report on the experimental observation of TMF in high-mobility mono-, bi- and tri-layer graphene devices. The ability to tune the graphene carrier density enables us to investigate TMF continuously from the hole to the electron regime and analyse the resulting focusing fan. Moreover, by applying a transverse electric field to tri-layer graphene, we use TMF as a ballistic electron spectroscopy method to investigate controlled changes in the electronic structure of a material. Finally, we demonstrate that TMF survives in graphene up to 300 K, by far the highest temperature reported for any system, opening the door to new room-temperature applications based on electron-optics.National Science Foundation (U.S.) (CAREER Award DMR-0845287)United States. Office of Naval Research. GATE MURI Projec

    Simulating the exchange of Majorana zero modes with a photonic system

    Get PDF
    The realization of Majorana zero modes is in the centre of intense theoretical and experimental investigations. Unfortunately, their exchange that can reveal their exotic statistics needs manipulations that are still beyond our experimental capabilities. Here we take an alternative approach. Through the Jordan-Wigner transformation, the Kitaev's chain supporting two Majorana zero modes is mapped to the spin-1/2 chain. We experimentally simulated the spin system and its evolution with a photonic quantum simulator. This allows us to probe the geometric phase, which corresponds to the exchange of two Majorana zero modes positioned at the ends of a three-site chain. Finally, we demonstrate the immunity of quantum information encoded in the Majorana zero modes against local errors through the simulator. Our photonic simulator opens the way for the efficient realization and manipulation of Majorana zero modes in complex architectures

    Microwave studies of the fractional Josephson effect in HgTe-based Josephson junctions

    Full text link
    The rise of topological phases of matter is strongly connected to their potential to host Majorana bound states, a powerful ingredient in the search for a robust, topologically protected, quantum information processing. In order to produce such states, a method of choice is to induce superconductivity in topological insulators. The engineering of the interplay between superconductivity and the electronic properties of a topological insulator is a challenging task and it is consequently very important to understand the physics of simple superconducting devices such as Josephson junctions, in which new topological properties are expected to emerge. In this article, we review recent experiments investigating topological superconductivity in topological insulators, using microwave excitation and detection techniques. More precisely, we have fabricated and studied topological Josephson junctions made of HgTe weak links in contact with two Al or Nb contacts. In such devices, we have observed two signatures of the fractional Josephson effect, which is expected to emerge from topologically-protected gapless Andreev bound states. We first recall the theoretical background on topological Josephson junctions, then move to the experimental observations. Then, we assess the topological origin of the observed features and conclude with an outlook towards more advanced microwave spectroscopy experiments, currently under development.Comment: Lectures given at the San Sebastian Topological Matter School 2017, published in "Topological Matter. Springer Series in Solid-State Sciences, vol 190. Springer

    Imaging Magnetic Focusing of Coherent Electron Waves

    Full text link
    The magnetic focusing of electrons has proven its utility in fundamental studies of electron transport. Here we report the direct imaging of magnetic focusing of electron waves, specifically in a two-dimensional electron gas (2DEG). We see the semicircular trajectories of electrons as they bounce along a boundary in the 2DEG, as well as fringes showing the coherent nature of the electron waves. Imaging flow in open systems is made possible by a cooled scanning probe microscope. Remarkable agreement between experiment and theory demonstrates our ability to see these trajectories and to use this system as an interferometer. We image branched electron flow as well as the interference of electron waves. This technique can visualize the motion of electron waves between two points in an open system, providing a straightforward way to study systems that may be useful for quantum information processing and spintronics

    Voltage- and light-controlled spin properties of a two-dimensional hole gas in p-type GaAs/AlAs resonant tunneling diodes

    Get PDF
    We have investigated the spin properties of a two-dimensional hole gas (2DHG) formed at the contact layer of a p-type GaAs/AlAs resonant tunneling diode (RTD). We have measured the polarized-resolved photoluminescence of the RTD as a function of bias voltage, laser intensity and external magnetic field up to 15T. By tuning the voltage and the laser intensity, we are able to change the spin-splitting from the 2DHG from almost 0 meV to 5 meV and its polarization degree from − 40% to + 50% at 15T. These results are attributed to changes of the local electric field applied to the two-dimensional gas which affects the valence band and the hole Rashba spin–orbit effect

    Pinning down the last spin

    No full text
    • …
    corecore